53,241 research outputs found

    Persistent Orbital Degeneracy in Carbon Nanotubes

    Full text link
    The quantum-mechanical orbitals in carbon nanotubes are doubly degenerate over a large number of states in the Coulomb blockade regime. We argue that this experimental observation indicates that electrons are reflected without mode mixing at the nanotube-metal contacts. Two electrons occupying a pair of degenerate orbitals (a ``shell'') are found to form a triplet state starting from zero magnetic field. Finally, we observe unexpected low-energy excitations at complete filling of a four-electron shell.Comment: 6 pages, 4 figure

    Spatiotemporal evolution, mineralogical composition, and transport mechanisms of long-runout landslides in Valles Marineris, Mars

    Get PDF
    Long-runout landslides with transport distances of >50 km are ubiquitous in Valles Marineris (VM), yet the transport mechanisms remain poorly understood. Four decades of studies reveal significant variation in landslide morphology and emplacement age, but how these variations are related to landslide transport mechanisms is not clear. In this study, we address this question by conducting systematic geological mapping and compositional analysis of VM long-runout landslides using high-resolution Mars Reconnaissance Orbiter imagery and spectral data. Our work shows that: (1) a two-zone morphological division (i.e., an inner zone characterized by rotated blocks and an outer zone expressed by a thin sheet with a nearly flat surface) characterizes all major VM landslides; (2) landslide mobility is broadly dependent on landslide mass; and (3) the maximum width of the outer zone and its transport distance are inversely related to the basal friction that was estimated from the surface slope angle of the outer zone. Our comprehensive Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) compositional analysis indicates that hydrated silicates are common in landslide outer zones and nearby trough-floor deposits. Furthermore, outer zones containing hydrated minerals are sometimes associated with longer runout and increased lateral spreading compared to those without detectable hydrated minerals. Finally, with one exception we find that hydrated minerals are absent in the inner zones of the investigated VM landslides. These results as whole suggest that hydrated minerals may have contributed to the magnitude of lateral spreading and long-distance forward transport of major VM landslides

    Chiral expansion of the π0→γγ\pi^0\rightarrow\gamma\gamma decay width

    Full text link
    A chiral field theory of mesons has been applied to study the contribution of the current quark masses to the π0→γγ\pi^0\rightarrow\gamma\gamma decay width at the next leading order. 2%2\% enhancement has been predicted and there is no new parameter.Comment: 9 page

    Formation of Two Glass Phases in Binary Cu-Ag Liquid

    Get PDF
    The glass transition is alternatively described as either a dynamic transition in which there is a dramatic slowing down of the kinetics, or as a thermodynamic phase transition. To examine the physical origin of the glass transition in fragile Cu-Ag liquids, we employed molecular dynamics (MD) simulations on systems in the range of 32,000 to 2,048,000 atoms. Surprisingly, we identified a 1st order freezing transition from liquid (L) to metastable heterogenous solid-like phase, denoted as the G-glass, when a supercooled liquid evolves isothermally below its melting temperature at deep undercooling. In contrast, a more homogenous liquid-like glass, denoted as the L-glass, is achieved when the liquid is quenched continuously to room temperature with a fast cooling rate of ∼10¹¹ K/sec. We report a thermodynamic description of the L-G transition and characterize the correlation length of the heterogenous structure in the G-glass. The shear modulus of the G-glass is significantly higher than the L-glass, suggesting that the first order L-G transition is linked fundamentally to long-range elasticity involving elementary configurational excitations in the G-glass

    Structure And Properties of Nanoparticles Formed under Conditions of Wire Electrical Explosion

    Get PDF
    Structure and properties of nanoparticles formed under conditions of wire electrical explosion were studied. It was shown that the state of WEE power particles can be characterized as a metastable state. It leads to an increased stability of nanopowders at normal temperatures and an increased reactivity during heating, which is revealed in the form of threshold phenomena.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Shock-induced consolidation and spallation of Cu nanopowders

    Get PDF
    A useful synthesis technique, shock synthesis of bulk nanomaterials from nanopowders, is explored here with molecular dynamics simulations. We choose nanoporous Cu (∼11 nm in grain size and 6% porosity) as a representative system, and perform consolidation and spallation simulations. The spallation simulations characterize the consolidated nanopowders in terms of spall strength and damage mechanisms. The impactor is full density Cu, and the impact velocity (u_i) ranges from 0.2 to 2 km s^(−1). We present detailed analysis of consolidation and spallation processes, including atomic-level structure and wave propagation features. The critical values of u_i are identified for the onset plasticity at the contact points (0.2 km s^(−1)) and complete void collapse (0.5 km s^(−1)). Void collapse involves dislocations, lattice rotation, shearing/friction, heating, and microkinetic energy. Plasticity initiated at the contact points and its propagation play a key role in void collapse at low u_i, while the pronounced, grain-wise deformation may contribute as well at high u_i. The grain structure gives rise to nonplanar shock response at nanometer scales. Bulk nanomaterials from ultrafine nanopowders (∼10 nm) can be synthesized with shock waves. For spallation, grain boundary (GB) or GB triple junction damage prevails, while we also observe intragranular voids as a result of GB plasticity

    Binary pulsars as probes of a Galactic dark matter disk

    Full text link
    As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk.We estimate the effect and compare it with observations for two different limits in the Knudsen number (KnKn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn≫1Kn\gg1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn≪1Kn\ll1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn∼1Kn\sim1.Comment: 15 pages, 6 figures. Few comments and references added, version accepted for publication in Physics of the Dark Universe (PDU
    • …
    corecore